

How to tackle performance issues when
implementing high traffic multi-language search

engine with Solr/Lucene

Anca Kopetz

Software Engineer
André Bois-Crettez

Software Architect

Berlin Buzzwords 2014

Outline

 Context and setup

 Benchmarks

 Performance solutions

 Production

Context and setup

Kelkoo shopping platform

3000 queries per second 70M+ docs

12 countries

Context and setup

Facets

Context and setup

Search engines at Kelkoo

● Past : Yahoo vertical search engine
● 2013: New implementation using Solr 4.x

– Targetting Christmas high traffic

– Without NRT indexation

Context and setup

Before performance evaluation

Frequent interaction with SOLR communityFrequent interaction with SOLR community

● Target for biggest country cluster :
● 600+ qps, avg qtime ~200ms
● 12 servers, 10M+ docs

Context and setup

Cluster architecture

Benchmarks

Benchmarks

● Number of users in parallel : impact on CPU load
● Duration of test : important in order to have relevant results

Benchmarks

Gatling report

Benchmarks

Monitored resources
● Target

– Queries per second, response time

● System
– Memory and JVM heap

– CPU load

– I/O disk

● Solr
– Caches (hitratio, evictions)

– Warmup time

– Number of index segments

Benchmarks

Launch benchmarks

Benchmark results:
– Query performance evaluation
– Explore ways to improve it

Performance solutions

Shards and Replicas

● QTime ≈ max(qtime shard1, ..., qtime shardN)
● Qtime too long: shard !
● More queries per second: replicate !

Performance solutions

Fault tolerance

● Need resilience: replicate !

● Performance drops faster when sharding

Performance solutions

Heterogeneous hardware

 Slowest server is the bottleneck !
– ALL other servers will be underused

– Fun fact: some servers had 15% higher CPU usage
due to “energy saving” mode setting in BIOS !

Performance solutions

Indexation

Visibility: soft-commit Durability: hard-commit

openSearcher = true openSearcher = false

commitWithin = 30min autoCommit = 15min

tlogs not truncated tlogs truncated

 caches flushed & auto-warmed segment merges initiated

Performance solutions

Merge policy
● Reducing the number of index segments impacts the

query performance

● Optimize index : short-term benefits

Performance solutions

Aggressive merge policy

 <mergePolicy class="org.apache.lucene.index.TieredMergePolicy">
 <int name="maxMergeAtOnce">6</int> <!-- default : 10 -->
 <int name="segmentsPerTier">3</int> <!-- default : 10 -->
 <double name="reclaimDeletesWeight">5</double>
 </mergePolicy>

Performance solutions

 Search Caches

● MMapDirectory Lucene files: OS cache in RAM
● Less I/O wait, without increasing JVM memory used
● With enough RAM, SSD not useful for us

● DocumentCache: disabled
● MMapDirectory efficient enough to load stored fields

● QueryResultCache: very small
● Already a cache above Kelkoo Search API

Performance solutions

Search Caches

● Filters : filterCache
● Facet on single-valued field (categoryid)

– facet.method=fc : fieldCache

● Facet on dynamic multi-valued fields (feature_*)
– facet.method=fc : fieldValueCache

● Higher memory usage per field
● Not good for low cardinality fields

– facet.method=enum : filterCache
● Optimal memory usage for lots of dynamic fields
● Adequate processing time

&q=iphone
&fq=merchantid:112233
&facet.field=categoryid
&facet.field=feature_color

Performance solutions

Query features

Relevancy Performance

A/B testing Monitoring

Get a good balance between ...

Performance solutions

leather accessory iphone 5

● AND/OR
● facets
● group by merchant

Performance solutions

Improvements during benchmarks

● SolrCloud architecture
● Indexation policy
● Merge policy
● Search caches
● Solr features

Production

Production

● OutOfMemory due to filterCache
● Production behaviour different from benchmarks
● Use of -Xms30G -Xmx30G, reduce number of filterCache

entries

● GC params :
http://wiki.apache.org/solr/ShawnHeisey#GC_Tuning

● Concurrent Mark and Sweep is important for Solr

● Servers in recovery: impact on performance
● Updated Solr to latest versions

http://wiki.apache.org/solr/ShawnHeisey#GC_Tuning

Conclusions

● Success story with Lucene/Solr
– 1 year, 3000 qps peaks, 70M+ docs

● Benchmarks vs. Production
● Monitor resources
● Identify the bad guy and deal with him!

● New ideas for performance optimization

Questions ?

● Search ? Big Data ? Join us !
http://jobs.kelkoo.fr/

André Bois-Crettez <andre.bois@kelkoo.com>

Anca Kopetz <anca.kopetz@kelkoo.com>

http://jobs.kelkoo.fr/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

