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Context and setup

Kelkoo shopping platform

3000 queries per second 70M+ docs

12 countries



 

Context and setup

Facets



 

Context and setup

Search engines at Kelkoo

● Past : Yahoo vertical search engine
● 2013: New implementation using Solr 4.x

– Targetting Christmas high traffic

– Without NRT indexation



 

Context and setup

Before performance evaluation

Frequent interaction with SOLR communityFrequent interaction with SOLR community

● Target for biggest country cluster :
● 600+ qps, avg qtime ~200ms
● 12 servers, 10M+ docs



 

Context and setup

Cluster architecture



  

Benchmarks

Benchmarks

● Number of users in parallel : impact on CPU load 
● Duration of test : important in order to have relevant results 



  

Benchmarks

Gatling report



  

Benchmarks

Monitored resources
● Target

– Queries per second, response time

● System
– Memory and JVM heap

– CPU load 

– I/O disk

● Solr
– Caches (hitratio, evictions)

– Warmup time

– Number of index segments



  

Benchmarks

Launch benchmarks

Benchmark results: 
– Query performance evaluation
– Explore ways to improve it  



  

Performance solutions

Shards and Replicas

● QTime ≈ max(qtime shard1, ..., qtime shardN)
● Qtime too long: shard !
● More queries per second: replicate !



  

Performance solutions

Fault tolerance

● Need resilience: replicate !

● Performance drops faster when sharding



  

Performance solutions

Heterogeneous hardware

    Slowest server is the bottleneck !
– ALL other servers will be underused

– Fun fact: some servers had 15% higher CPU usage 
due to “energy saving” mode setting in BIOS !



  

Performance solutions

Indexation

Visibility: soft-commit Durability: hard-commit

openSearcher = true openSearcher = false

commitWithin = 30min autoCommit = 15min

tlogs not truncated tlogs truncated

   caches flushed & auto-warmed segment merges initiated



  

Performance solutions

Merge policy
● Reducing the number of index segments impacts the 

query performance 

● Optimize index : short-term benefits



  

Performance solutions

Aggressive merge policy

 <mergePolicy class="org.apache.lucene.index.TieredMergePolicy">
       <int name="maxMergeAtOnce">6</int>  <!-- default : 10 -->
       <int name="segmentsPerTier">3</int> <!-- default : 10 -->
       <double name="reclaimDeletesWeight">5</double>
 </mergePolicy>



  

Performance solutions

 Search Caches

● MMapDirectory Lucene files: OS cache in RAM
● Less I/O wait, without increasing JVM memory used
● With enough RAM, SSD not useful for us

● DocumentCache: disabled
● MMapDirectory efficient enough to load stored fields

● QueryResultCache: very small
● Already a cache above Kelkoo Search API



  

Performance solutions

Search Caches

● Filters : filterCache
● Facet on single-valued field (categoryid)

– facet.method=fc : fieldCache

● Facet on dynamic multi-valued fields (feature_*)
– facet.method=fc : fieldValueCache

● Higher memory usage per field
● Not good for low cardinality fields

– facet.method=enum : filterCache
● Optimal memory usage for lots of dynamic fields
● Adequate processing time

&q=iphone
&fq=merchantid:112233
&facet.field=categoryid
&facet.field=feature_color



  

Performance solutions

Query features

Relevancy Performance

A/B testing Monitoring

Get a good balance between ...



  

Performance solutions

leather accessory iphone 5

● AND/OR
● facets
● group by merchant



  

Performance solutions

Improvements during benchmarks 

● SolrCloud architecture
● Indexation policy
● Merge policy
● Search caches
● Solr features



  

Production

Production

● OutOfMemory due to filterCache
● Production behaviour different from benchmarks
● Use of -Xms30G -Xmx30G, reduce number of filterCache 

entries

● GC params : 
http://wiki.apache.org/solr/ShawnHeisey#GC_Tuning

● Concurrent Mark and Sweep is important for Solr

● Servers in recovery: impact on performance
● Updated Solr to latest versions

http://wiki.apache.org/solr/ShawnHeisey#GC_Tuning


  

Conclusions

● Success story with Lucene/Solr
– 1 year, 3000 qps peaks, 70M+ docs

● Benchmarks vs. Production
● Monitor resources
● Identify the bad guy and deal with him!

● New ideas for performance optimization



  

Questions ?

● Search ? Big Data ? Join us !
http://jobs.kelkoo.fr/

André Bois-Crettez <andre.bois@kelkoo.com>

Anca Kopetz <anca.kopetz@kelkoo.com>

http://jobs.kelkoo.fr/
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