
Vectorized Query Execution In Apache Hive

Jitendra Nath Pandey

Hortonworks Inc.

Background
What is Apache Hive?

SQL query engine on Apache Hadoop

Map-reduce is the execution engine, Implemented in Java

Performance concerns for hive

 Initially designed for batch processing, flexibility

Multi-pronged solution (Project Stinger at Hortonworks)

Better Query Planning

New Distributed Execution Engine: TEZ

Vectorized Query Processing

 CPU performance

This talk’s focus

Vectorized Query Processing

Background Contd.
Row by Row processing in Hive

A single row is processed through the entire operator tree before the next
row is picked.

Inefficient use of CPU instruction pipeline

Inefficient use of superscalar (hyper-pipelined) processors

Poor cache locality.

 Layer of object inspectors

 Run time type inference

 Lots of virtual method calls, branching in the inner loop

Result: Low IPC

Vectorized Query
Processing

Process data in a batch of 1024 rows

Instead of processing a row at a time, process a
column vector with 1024 values at a time

c = a + b vectorC = vectorA + vectorB

1024 has been chosen so that the row batch fits
in cache. In most cases L2 cache is enough

Column vectors are arrays of primitive types, as
far as possible

Decimal is an exception

Vectorized Query
Processing

Minimize branching in the inner loop, i.e. the loop that
processes column vectors of a row batch for an
expression.

An expression is a unit of work e.g. addition

Remove the layer of object inspectors.

Eager deserialization

No type inference at run time

No object allocations in the inner loop

Minimal function calls in the inner loop

The Inner Loop
Class VectorizedRowBatch {

 ColumnVector [] cols;

 int [] selected;

 boolean selectedInUse;

}

Class DoubleColumnAddDoubleScalar {

 int inputIndex;

 int outputIndex;

 double scalarValue;

 void evaluate (VectorizedRowBatch batch) {

 double [] vector1 = (DoubleColumnVector) batch.cols[inputIndex];

 double [] outputVector = batch.cols[outputIndex];

 if (batch.selectedInUse) {

 for(int j = 0; j != batch.size; j++) {

 int i = batch.selected[j];

 outputVector[i] = vector1[i] + scalarValue;

 }

 } else {

 for(int i = 0; i != batch.size; i++) {

 outputVector[i] = vector1[i] + scalarValue;

 }

 }

 }

}

It works in JAVA too!
Java Worries

Cannot use SIMD (Java 8)

Non contiguous arrays.

 Cache locality could go for a toss

Runtime checks

Reliance on JIT

But, the preliminary results were good

Preliminary Evaluation
CPU performance

 In memory deserialized data as input

Filter operator

 Select a, b from Table where a = 10;

8x performance improvement

End to end improvement 3x

Optimizations
Optimized handling for column vectors with no

nulls

Optimized handling for column vectors with
repeating values

Optimized filters

Short circuit evaluation

Vectorized Row Batch is created once and is re-
used. All computation is in-place

Cache locality

Code Generation
Type specific code

Specialized implementations for the same expression for
different data types.

 LongColAddDoubleScalar

 DoubleColAddDoubleScalar

The code is generated from templates

Pre-compiled in the code base.

The planner puts the right expression class based on the
data types involved.

No code generation using LLVM (Future work)

Vectorized Reader
How is a vectorized row batch loaded?

Columnar data formats are more efficient

ORC Input format

https://issues.apache.org/jira/browse/HIVE-3874

Other file formats

Need a vectorized reader

One can implement a vectorized reader for any input format

Considering to add an adapter layer that buffers up rows into
vectorized row batches

 It is very important to efficiently load the row batches.

https://issues.apache.org/jira/browse/HIVE-3874
https://issues.apache.org/jira/browse/HIVE-3874
https://issues.apache.org/jira/browse/HIVE-3874
https://issues.apache.org/jira/browse/HIVE-3874
https://issues.apache.org/jira/browse/HIVE-3874

Evaluation

Vectorized
Non-Vectorized

TPCH

Vectorized
Non-Vectorized

Try it out
Vectorization is available in Apache Hive-0.13.

Enable using

SET hive.vectorized.execution.enabled=true;

The data needs to be in ORC format

Other formats will be supported in future releases.

Upcoming Releases
Reduce side vectorization

Shuffle join

Windowing functions

Multi-staged query processing

Optimized Join implementations

More datatypes

Varchar

Char

Complex datatypes

More optimized decimal implementation.

Thanks!
A geographically distributed team.

Started as a joint project between Hortonworks/Microsoft

Key Contributors

Hortonworks

 Jitendra Pandey, Gopal V, Sergey Selukhin, Teddy Choi

Microsoft

 Eric Hanson, Remus Rusanu, Sarvesh Sakalanaga, Tony Murphy

Others

 Tim Chen, Hideaki Kimura

Contributors are welcome!

Contact me at:

 jitendra@hortonworks.com

 jitendra@apache.org

mailto:jitendra@hortonworks.com
mailto:jitendra@apache.org

	Vectorized Query Execution In Apache Hive
	Background
	Background Contd.
	Vectorized Query Processing
	Vectorized Query Processing
	The Inner Loop
	It works in JAVA too!
	Preliminary Evaluation
	Optimizations
	Code Generation
	Vectorized Reader
	Evaluation
	TPCH
	Try it out
	Upcoming Releases
	Thanks!
	Folie 17

