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Background
What is Apache Hive?

SQL query engine on Apache Hadoop

Map-reduce is the execution engine, Implemented in Java

Performance concerns for hive

 Initially designed for batch processing, flexibility

Multi-pronged solution (Project Stinger at Hortonworks)

Better Query Planning

New Distributed Execution Engine: TEZ

Vectorized Query Processing

 CPU performance

This talk’s focus

Vectorized Query Processing



Background Contd.
Row by Row processing in Hive

A single row is processed through the entire operator tree before the next 
row is picked.

Inefficient use of CPU instruction pipeline

Inefficient use of superscalar (hyper-pipelined) processors

Poor cache locality.

 Layer of object inspectors

 Run time type inference

 Lots of virtual method calls, branching in the inner loop

Result: Low IPC



Vectorized Query 
Processing

Process data in a batch of 1024 rows

Instead of processing a row at a time, process a 
column vector with 1024 values at a time

c = a + b   vectorC = vectorA + vectorB

1024 has been chosen so that the row batch fits 
in cache. In most cases L2 cache is enough

Column vectors are arrays of primitive types, as 
far as possible

Decimal is an exception



Vectorized Query 
Processing

Minimize branching in the inner loop, i.e. the loop that 
processes column vectors of a row batch for an 
expression.

An expression is a unit of work e.g. addition

Remove the layer of object inspectors.

Eager deserialization

No type inference at run time

No object allocations in the inner loop

Minimal function calls in the inner loop



The Inner Loop
Class VectorizedRowBatch {

   ColumnVector [] cols; 

   int [] selected;

   boolean selectedInUse;

} 

Class DoubleColumnAddDoubleScalar {

      int inputIndex;

      int outputIndex;

      double scalarValue;

     void evaluate (VectorizedRowBatch batch) {   

          double [] vector1 = (DoubleColumnVector) batch.cols[inputIndex]; 

          double [] outputVector = batch.cols[outputIndex];

 

          if (batch.selectedInUse) {

               for(int j = 0; j != batch.size; j++) {

                     int i = batch.selected[j];

                     outputVector[i] = vector1[i] + scalarValue;

               }

          } else {

               for(int i = 0; i != batch.size; i++) {

                     outputVector[i] = vector1[i] +  scalarValue;

               }

          }

     }

}



It works in JAVA too!
Java Worries

Cannot use SIMD (Java 8)

Non contiguous arrays.

 Cache locality could go for a toss

Runtime checks

Reliance on JIT

But, the preliminary results were good



Preliminary Evaluation
CPU performance

 In memory deserialized data as input

Filter operator

 Select a, b from Table where a = 10;

8x performance improvement

End to end improvement 3x



Optimizations
Optimized handling for column vectors with no 

nulls

Optimized handling for column vectors with 
repeating values

Optimized filters

Short circuit evaluation

Vectorized Row Batch is created once and is re-
used. All computation is in-place 

Cache locality



Code Generation
Type specific code

Specialized implementations for the same expression for 
different data types.

 LongColAddDoubleScalar

 DoubleColAddDoubleScalar

The code is generated from templates

Pre-compiled in the code base.

The planner puts the right expression class based on the 
data types involved.

No code generation using LLVM (Future work)



Vectorized Reader
How is a vectorized row batch loaded?

Columnar data formats are more efficient

ORC Input format 

https://issues.apache.org/jira/browse/HIVE-3874

Other file formats

Need a vectorized reader

One can implement a vectorized reader for any input format

Considering to add an adapter layer that buffers up rows into 
vectorized row batches

 It is very important to efficiently load the row batches.

https://issues.apache.org/jira/browse/HIVE-3874
https://issues.apache.org/jira/browse/HIVE-3874
https://issues.apache.org/jira/browse/HIVE-3874
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Evaluation

Vectorized
Non-Vectorized



TPCH

Vectorized
Non-Vectorized



Try it out
Vectorization is available in Apache Hive-0.13.

Enable using

SET hive.vectorized.execution.enabled=true;

The data needs to be in ORC format

Other formats will be supported in future releases.



Upcoming Releases
Reduce side vectorization

Shuffle join

Windowing functions

Multi-staged query processing

Optimized Join implementations

More datatypes

Varchar

Char

Complex datatypes

More optimized decimal implementation.



Thanks!
A geographically distributed team.

Started as a joint project between Hortonworks/Microsoft

Key Contributors

Hortonworks

 Jitendra Pandey, Gopal V, Sergey Selukhin, Teddy Choi

Microsoft

 Eric Hanson, Remus Rusanu, Sarvesh Sakalanaga, Tony Murphy

Others

 Tim Chen, Hideaki Kimura

Contributors are welcome!



Contact me at:

 jitendra@hortonworks.com

 jitendra@apache.org

mailto:jitendra@hortonworks.com
mailto:jitendra@apache.org
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