
Vectorized Query Execution In Apache Hive

Jitendra Nath Pandey

Hortonworks Inc.

Background
What is Apache Hive?

SQL query engine on Apache Hadoop

Map-reduce is the execution engine, Implemented in Java

Performance concerns for hive

 Initially designed for batch processing, flexibility

Multi-pronged solution (Project Stinger at Hortonworks)

Better Query Planning

New Distributed Execution Engine: TEZ

Vectorized Query Processing

 CPU performance

This talk’s focus

Vectorized Query Processing

Background Contd.
Row by Row processing in Hive

A single row is processed through the entire operator tree before the next
row is picked.

Inefficient use of CPU instruction pipeline

Inefficient use of superscalar (hyper-pipelined) processors

Poor cache locality.

 Layer of object inspectors

 Run time type inference

 Lots of virtual method calls, branching in the inner loop

Result: Low IPC

Vectorized Query
Processing

Process data in a batch of 1024 rows

Instead of processing a row at a time, process a
column vector with 1024 values at a time

c = a + b  vectorC = vectorA + vectorB

1024 has been chosen so that the row batch fits
in cache. In most cases L2 cache is enough

Column vectors are arrays of primitive types, as
far as possible

Decimal is an exception

Vectorized Query
Processing

Minimize branching in the inner loop, i.e. the loop that
processes column vectors of a row batch for an
expression.

An expression is a unit of work e.g. addition

Remove the layer of object inspectors.

Eager deserialization

No type inference at run time

No object allocations in the inner loop

Minimal function calls in the inner loop

The Inner Loop
Class VectorizedRowBatch {

 ColumnVector [] cols;

 int [] selected;

 boolean selectedInUse;

}

Class DoubleColumnAddDoubleScalar {

 int inputIndex;

 int outputIndex;

 double scalarValue;

 void evaluate (VectorizedRowBatch batch) {

 double [] vector1 = (DoubleColumnVector) batch.cols[inputIndex];

 double [] outputVector = batch.cols[outputIndex];

 if (batch.selectedInUse) {

 for(int j = 0; j != batch.size; j++) {

 int i = batch.selected[j];

 outputVector[i] = vector1[i] + scalarValue;

 }

 } else {

 for(int i = 0; i != batch.size; i++) {

 outputVector[i] = vector1[i] + scalarValue;

 }

 }

 }

}

It works in JAVA too!
Java Worries

Cannot use SIMD (Java 8)

Non contiguous arrays.

 Cache locality could go for a toss

Runtime checks

Reliance on JIT

But, the preliminary results were good

Preliminary Evaluation
CPU performance

 In memory deserialized data as input

Filter operator

 Select a, b from Table where a = 10;

8x performance improvement

End to end improvement 3x

Optimizations
Optimized handling for column vectors with no

nulls

Optimized handling for column vectors with
repeating values

Optimized filters

Short circuit evaluation

Vectorized Row Batch is created once and is re-
used. All computation is in-place

Cache locality

Code Generation
Type specific code

Specialized implementations for the same expression for
different data types.

 LongColAddDoubleScalar

 DoubleColAddDoubleScalar

The code is generated from templates

Pre-compiled in the code base.

The planner puts the right expression class based on the
data types involved.

No code generation using LLVM (Future work)

Vectorized Reader
How is a vectorized row batch loaded?

Columnar data formats are more efficient

ORC Input format

https://issues.apache.org/jira/browse/HIVE-3874

Other file formats

Need a vectorized reader

One can implement a vectorized reader for any input format

Considering to add an adapter layer that buffers up rows into
vectorized row batches

 It is very important to efficiently load the row batches.

https://issues.apache.org/jira/browse/HIVE-3874
https://issues.apache.org/jira/browse/HIVE-3874
https://issues.apache.org/jira/browse/HIVE-3874
https://issues.apache.org/jira/browse/HIVE-3874
https://issues.apache.org/jira/browse/HIVE-3874

Evaluation

Vectorized
Non-Vectorized

TPCH

Vectorized
Non-Vectorized

Try it out
Vectorization is available in Apache Hive-0.13.

Enable using

SET hive.vectorized.execution.enabled=true;

The data needs to be in ORC format

Other formats will be supported in future releases.

Upcoming Releases
Reduce side vectorization

Shuffle join

Windowing functions

Multi-staged query processing

Optimized Join implementations

More datatypes

Varchar

Char

Complex datatypes

More optimized decimal implementation.

Thanks!
A geographically distributed team.

Started as a joint project between Hortonworks/Microsoft

Key Contributors

Hortonworks

 Jitendra Pandey, Gopal V, Sergey Selukhin, Teddy Choi

Microsoft

 Eric Hanson, Remus Rusanu, Sarvesh Sakalanaga, Tony Murphy

Others

 Tim Chen, Hideaki Kimura

Contributors are welcome!

Contact me at:

 jitendra@hortonworks.com

 jitendra@apache.org

mailto:jitendra@hortonworks.com
mailto:jitendra@apache.org

	Vectorized Query Execution In Apache Hive
	Background
	Background Contd.
	Vectorized Query Processing
	Vectorized Query Processing
	The Inner Loop
	It works in JAVA too!
	Preliminary Evaluation
	Optimizations
	Code Generation
	Vectorized Reader
	Evaluation
	TPCH
	Try it out
	Upcoming Releases
	Thanks!
	Folie 17

