
How Graphs and Java make
GraphHopper

efficient and fast

By Peter @timetabling
Berlin Buzzwords, 2014-05-27

|_ Available at graphhopper.com/public/slides

http://graphhopper.com/public/slides/

How Graphs and Java make
GraphHopper

efficient and fast

By Peter @timetabling
Berlin Buzzwords, 2014-05-27

How int[][] helped GraphHopper scaling

Available at graphhopper.com/public/slides

http://graphhopper.com/public/slides/

Components of
an Online Map

A full “maps” application requires:

1. Drawing: Display map from vector or raster data
2. Geocoding: Search address, get GPS coordinates

E.g. we use photon powered by ElasticSearch

3. Routing: find best paths between coordinates
→ GraphHopper is all about routing!

GraphHopper Maps
= Address Search* + Tiles + GraphHopper

graphhopper.com/maps

http://graphhopper.com/maps
http://graphhopper.com/maps

What is GraphHopper?

1. Open Source & fast road routing library and server
2. Written in Java: runs on Server, Desktop, Android, …

new: offline in the Browser, Raspberry Pi and iOS
3. Very memory-efficient but still has an easy to use API
4. The Low-level API is built to be flexible
5. Handles OpenStreetMap data by default
6. Business-friendly: Apache License and we offer

Consulting & Support
7. Many unit, integration and load tests

https://karussell.wordpress.com/2014/05/04/graphhopper-in-the-browser-teavm-makes-offline-routing-via-openstreetmap-possible-in-javascript/
http://karussell.wordpress.com/2014/01/09/road-routing-on-raspberry-pi-with-graphhopper/
https://lists.openstreetmap.org/pipermail/graphhopper/2014-May/000995.html

 Hackable & Flexible!

You can try different implementations for algorithms,
use case (social graphs), storage, ...

What is GraphHopper?

What you can do?
● Point to point routing
● Distance matrix e.g. for logistics
● Outdoor routing for biking/hiking
● Track vehicles via map matching (not

included)
● Simulation / Urban planning
● Games or VR (think ‘Scotland Yard’)
● Crisis management
● Graph traversal and statistics

Road Graph
● In a graph we have nodes and edges
● In real world we have junctions and streets
● Edges and nodes have properties like coordinates

Real word network Road Graph

Why Java?
Normally I answer with:

● Why not?
● I’m stupid and lazy!
● In PHP too many people would have

contributed

Why Java?
Today you’ll learn the truth:

It is all about tooling!
But also: stupidity!

● C++ compiling is soo slow!
○ yes, javac is faster even through maven ;) !

● Java is easy (for me) to run, test, deploy, debug, profile
● Tried 2 weeks to set up a similar easy tooling in C++/D
● Open Source IDEs for C++ less powerful than Java (read: I’m lazy)
● D is an excellent language but tooling wasn’t that good (2012)
● I gave up

Java is slow?
“Knock, knock.”
“Who’s there?”

very long pause…

“Java.”

Java is slow?

GraphHopper finds the best route through entire Europe
in under 50ms.

For distance matrix calculations this is <5ms.

compared to what?

Demo!

Java is a memory hog!

Main reason: no structs in Java!

Oh!

compared to C/C++

Java array with refs C++ array with structs

Struct?

lat, lon

lat, lon

lat, lon

...

● Not that easy to introduce copy semantics in Java
● In Java 9: ValueTypes? Read more about this from John Rose

lat, lon

lat, lon

lat, lon

...lat, lon

...

......

● additional ref
● cache unfriendly

● copy semnatics e.g. if sharing one
point in two arrays

https://blogs.oracle.com/jrose/entry/value_types_in_the_vm

Until then ...

… we do 2 things to avoid wasting memory
1. Scale via int[][]
2. Flyweight pattern

1. Scale via int[][]
A simple in-memory key-value storage can be
implemented via HashMap<String, Object> in Java

Problems:

● Huge waste of memory due to storing the key
● You need the Object reference (waste especially for small

objects)
● Resizing triggers rehashing and costly re-allocation
● Still limited to 2 billion objects

Ideas:
1. Use List<Object> avoids storing the key and the rehashing
2. Use byte[] and (de-)serialization to avoid the Object references
3. Use array of byte[] to append instead of costly costly re-allocation

for resizing. But also to allow >2 billion

1. Scale via int[][]
interface DataAccess

Solves:
● less complex access compared to using the raw byte[]
● no 2 billion limit due to ‘long’ key
● can have multiple implementations like byte[][] or int[][]

(often int[][] is fastest for us)
● can be implemented via array of ByteBuffer => off-heap

→ very useful for offline navigation on mobile devices (mmap)

Still Problems:
● more complex to access compared to HashMap

How You can scale
● Array-alike access of DataAccess is very specific
● Plenty of more generic solutions for You:

○ MapDB
provides convenient access via Map interface

○ fasttuple
○ shared-memory-cache
○ larray
○ Java-Lang

● Nearly all (NO-SQL) databases written in Java make
use of a similar technique: lucene, hbase,
cassandra, ...

https://github.com/jankotek/mapdb
https://github.com/jankotek/mapdb
https://github.com/boundary/fasttuple
https://github.com/boundary/fasttuple
https://github.com/odnoklassniki/shared-memory-cache
https://github.com/odnoklassniki/shared-memory-cache
https://github.com/xerial/larray
https://github.com/xerial/larray
https://github.com/OpenHFT/Java-Lang
https://github.com/OpenHFT/Java-Lang

2. Flyweight pattern
We use flyweight pattern to traverse the graph
→ avoids creation of new objects due to deserialization

So, instead of:
for(RoadEdge edge : graph.getEdges(someNode)) {
 double dist = edge.getDistance();
}

… we do:
EdgeExplorer explorer = graph.createExplorer();
EdgeIterator iter = explorer.setBaseNode(someNode);
while(iter.next()) {
 double dist = iter.getDistance();
}

https://en.wikipedia.org/wiki/Flyweight_pattern

Why creating a
specialized Graph DB?

● neo4j?
● orientdb?
● lucene? (Lumeo)

No, because:
● We needed a very fast and only

specialized graph storage!
● Has to run on mobile devices
● Wasn’t fun but necessary

http://github.com/karussell/lumeo

Do your own benchmarks
● Don’t believe me or random benchmarks in the www
● Do your own benchmarks
● But do it correctly! Aleksey Shipilёv, 2009, in

response to my microbenchmarking post:
“The technique described in this post is ultimately broken. It also
contradicts with the best practices of measuring the Java
performance.”

He referred in one of his talks to my post as pitfall #3.
Ouch! Avoid “learning by shame & pain” and try:
● JMH harness for microbenchmarks
● jcstress concurrency stress tests
● Profilers like Yourkit/NetBeans/...

http://shipilev.net/
http://karussell.wordpress.com/2009/05/21/microbenchmarking-java-compare-algorithms/
http://shipilev.net/talks/j1-Oct2011-21682-benchmarking.pdf
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jcstress/
http://openjdk.java.net/projects/code-tools/jcstress/

→ Input: one start and one end node

1. nodeX := start node
2. Get all neighboring nodes of nodeX
3. Put distance of edges for those nodes into a priority

queue
4. later steps: add old distance
5. nodeX : getMin(priority queue)
6. Go to 1, break if nodeX == end node

→ Output: Smallest distance from start to end
 Get final path via shortest path tree

Dijkstra

Bidirectional Dijkstra

http://karussell.files.wordpress.com/2012/06/bidijkstra.gif

Contraction Hierarchies
Makes Dijkstra faster and still correct

Pre-calculation:
● Introduce node ordering
● Create shortcuts to avoid unimportant nodes
● Special “upwards“ bidirectional Dijkstra while

querying
● Recursively unpack shortcuts to get edges → Path

Limitations:
● Uses a lot more RAM
● Every profiles (fastest, shortest, ...) needs a pre-

calculation, cannot be done on-demand

Numbers
World wide
● For car: ~120 mio edges, ~100 mio nodes
● Takes ~1h to import and requires 20GB RAM

or less if mem. mapped config, but then use SSD!
To run this 9GB are required

With enabled Contraction Hierarchies
● preparation takes ~2h (cars) and requires 24GB

to run this 16GB are required
● Moscow-Madrid is under 0.04s instead >10s
● Compared to the fastest commercial Maps APIs:

○ for embedded or in-LAN queries it is ~5x faster
○ for calls over http it is similar fast

● graphhopper.com
● graphhopper.com/maps
● graphhopper.com/#community
● github.com/graphhopper

Links

http://graphhopper.com/
http://graphhopper.com/
http://graphhopper.com/maps/
http://graphhopper.com/maps/
http://graphhopper.com/#community
http://graphhopper.com/#community
https://github.com/graphhopper/
https://github.com/graphhopper/

Thanks!

