
Apache Giraph
start analyzing graph relationships in your bigdata in 45 minutes
(or your money back)!

Who’s this guy?

Roman Shaposhnik

•ASF junkie
• VP of Apache Incubator, former VP of Apache Bigtop
• Hadoop/Sqoop/Giraph committer
• contributor across the Hadoop ecosystem)

•Used to be root@Cloudera
•Used to be a PHB at Yahoo!
•Used to be a UNIX hacker at Sun microsystems

Giraph in action (MEAP)

http://manning.com/martella/

I am hiring!

What’s this all about?

Agenda

• A brief history of Hadoop-based bigdata management
• Extracting graph relationships from unstructured data
• A case for iterative and explorative workloads
• Bulk Synchronous Parallel to the rescue!
• Apache Giraph: a Hadoop-based BSP graph analysis

framework
• Giraph application development
• Demos! Code! Lots of it!

On day one Doug created
HDFS/MR

Google papers

•GFS (file system)
• distributed
• replicated
• non-POSIX

•MapReduce (computational framework)
• distributed
• batch-oriented (long jobs; final results)
• data-gravity aware
• designed for “embarrassingly parallel” algorithms

One size doesn’t fit all

•Key-value approach
• map is how we get the keys
• shuffle is how we sort the keys
• reduce is how we get to see all the values for a key

•Pipeline approach
•Intermediate results in a pipeline need to be flushed to HDFS
•A very particular “API” for working with your data

It’s not about the size of your
data;
it’s about what you do with it!

Graph relationships

•Entities in your data: tuples
• customer data
• product data
• interaction data

•Connection between entities: graphs
• social network or my customers
• clustering of customers vs. products

Challenges

•Data is dynamic
• No way of doing “schema on write”

•Combinatorial explosion of datasets
• Relationships grow exponentially

•Algorithms become
• explorative
• iterative

Graph databases

•Plenty available
• Neo4J, Titan, etc.

•Benefits
• Tightly integrate systems with few moving parts
• High performance on known data sets

•Shortcomings
• Don’t integrate with HDFS
• Combine storage and computational layers
• A sea of APIs

Enter Apache Giraph

Key insights

•Keep state in memory for as long as needed
•Leverage HDFS as a repository for unstructured data
•Allow for maximum parallelism (shared nothing)
•Allow for arbitrary communications
•Leverage BSP approach

Bulk Synchronous
Parallel

time

 communications

local
processing

barrier #1

barrier #2

barrier #3

BSP applied to graphs

@rhatr

@TheASF

@c0sin

Think like a vertex:
•I know my local state
•I know my neighbours
•I can send messages to vertices
•I can declare that I am done
•I can mutate graph topology

Bulk Sequential
Processing

time

 message delivery

individual
vertex
processing
 &
sending
messages

superstep #1

all vertices are “done”

superstep #2

Giraph “Hello World”
public class GiraphHelloWorld extends

 BasicComputation<IntWritable, IntWritable, NullWritable, NullWritable> {

 public void compute(Vertex<IntWritable, IntWritable, NullWritable> vertex,

 Iterable<NullWritable> messages) {

 System.out.println(“Hello world from the: “ + vertex.getId() + “ : “);

 for (Edge<IntWritable, NullWritable> e : vertex.getEdges()) {

 System.out.println(“ “ + e.getTargetVertexId());

 }

 System.out.println(“”);

 }

}

Mighty four of Giraph
API

BasicComputation<IntWritable, // VertexID -- vertex ref

 IntWritable, // VertexData -- a vertex
datum
 NullWritable, // EdgeData -- an edge
label datum
 NullWritable>// MessageData -- message
payload

On circles and arrows

•You don’t even need a graph to begin with!
• Well, ok you need at least one node

•Dynamic extraction of relationships
• EdgeInputFormat
• VetexInputFormat

•Full integration with Hadoop ecosystem
• HBase/Accumulo, Gora, Hive/HCatalog

Anatomy of Giraph run

3 1 2

1
2 1 3

1
2 1 3
3 1 2

 HDFS mappers reducers HDFS

@rhatr

@TheASF

@c0sin

InputF
o rm

at

O
utputF

orm
at

1

2

3

Anatomy of Giraph run
 mappers or YARN containers

@rhatr

@TheASF

@c0sin

InputF
o rm

at

O
utputF

orm
at

1

2

3

A vertex view

MessageData1

VertexID

EdgeData

EdgeData

 VertexData MessageData2

Turning Twitter into
Facebook

@rhatr

@TheASF

@c0sin

 rhatr

 TheASF

 c0sin

Ping thy neighbours
public void compute(Vertex<Text, DoubleWritable, DoubleWritable> vertex,
Iterable<Text> ms){

 if (getSuperstep() == 0) {

 sendMessageToAllEdges(vertex, vertex.getId());

 } else {

 for (Text m : ms) {

 if (vertex.getEdgeValue(m) == null) {

 vertex.addEdge(EdgeFactory.create(m, SYNTHETIC_EDGE));

 }

 }

 }

 vertex.voteToHalt();

 }

Demo time!

But I don’t have a
cluster!
•Hadoop in pseudo-distributed mode

• All Hadoop services on the same host (different JVMs)
• Hadoop-as-a-Service

• Amazon’s EMR, etc.
• Hadoop in local mode

Prerequisites

•Apache Hadoop 1.2.1
•Apache Giraph 1.1.0-SNAPSHOT
•Apache Maven 3.x
•JDK 7+

Setting things up

$ curl hadoop.tar.gz | tar xzvf –
$ git clone git://git.apache.org/giraph.git ; cd giraph
$ mvn –Phadoop_1 package
$ tar xzvf *dist*/*.tar.gz

$ export HADOOP_HOME=/Users/shapor/dist/hadoop-1.2.1
$ export GIRAPH_HOME=/Users/shapor/dist/
$ export HADOOP_CONF_DIR=$GIRAPH_HOME/conf
$ PATH=$HADOOP_HOME/bin:$GIRAPH_HOME/bin:$PATH

Setting project up
(maven)

 <dependencies>

 <dependency>

 <groupId>org.apache.giraph</groupId>

 <artifactId>giraph-core</artifactId>

 <version>1.1.0-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.apache.hadoop</groupId>

 <artifactId>hadoop-core</artifactId>

 <version>1.2.1</version>

 </dependency>

 </dependencies>

Running it

$ mvn package
$ giraph target/*.jar giraph.GiraphHelloWorld \
 -vip src/main/resources/1 \
 -vif
org.apache.giraph.io.formats.IntIntNullTextInputFormat \
 -w 1 \
 -ca
giraph.SplitMasterWorker=false,giraph.logLevel=error

Testing it
public void testNumberOfVertices() throws Exception {

 GiraphConfiguration conf = new GiraphConfiguration();

 conf.setComputationClass(GiraphHelloWorld.class);

conf.setVertexInputFormatClass(TextDoubleDoubleAdjacencyListVertexInputForma
t.class);

 …

 Iterable<String> results =

 InternalVertexRunner.run(conf, graphSeed);

 …

 }

Simplified view
 mappers or YARN containers

@rhatr

@TheASF

@c0sin

InputF
o rm

at

O
utputF

orm
at

1

2

3

Master and master
compute

@rhatr

@TheASF

@c0sin

1

2

3

Active
Master

compute()

Standby
Master

 Zookeeper

Master compute

•Runs before slave compute()
•Has a global view
•A place for aggregator manipulation

Aggregators

•“Shared variables”
•Each vertex can push values to an aggregator
•Master compute has full control

@rhatr

@TheASF

@c0sin

1

2

3

Active
Master

 min:
 sum:

1
1

2
2

3
1

Questions?

	Apache Giraph start analyzing graph relationships in your bigdata in 45 minutes (or your money back)!
	Who’s this guy?
	PowerPoint Presentation
	Folie 4
	Folie 5
	What’s this all about?
	Folie 7
	On day one Doug created HDFS/MR
	Folie 9
	Folie 10
	It’s not about the size of your data; it’s about what you do with it!
	Folie 12
	Folie 13
	Folie 14
	Enter Apache Giraph
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Demo time!
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Questions?

