
Apache Giraph
start analyzing graph relationships in your bigdata in 45 minutes 
(or your money back)!



Who’s this guy?



Roman Shaposhnik

•ASF junkie
• VP of Apache Incubator, former VP of Apache Bigtop
• Hadoop/Sqoop/Giraph committer
• contributor across the Hadoop ecosystem)

•Used to be root@Cloudera
•Used to be a PHB at Yahoo!
•Used to be a UNIX hacker at Sun microsystems



Giraph in action (MEAP)

http://manning.com/martella/



I am hiring!



What’s this all about?



Agenda

• A brief history of Hadoop-based bigdata management
• Extracting graph relationships from unstructured data
• A case for iterative and explorative workloads
• Bulk Synchronous Parallel to the rescue!
• Apache Giraph: a Hadoop-based BSP graph analysis 

framework
• Giraph application development
• Demos! Code! Lots of it!



On day one Doug created 
HDFS/MR



Google papers

•GFS (file system)
• distributed
• replicated
• non-POSIX

•MapReduce (computational framework)
• distributed
• batch-oriented (long jobs; final results)
• data-gravity aware
• designed for “embarrassingly parallel” algorithms 



One size doesn’t fit all

•Key-value approach
• map is how we get the keys
• shuffle is how we sort the keys
• reduce is how we get to see all the values for a key

•Pipeline approach
•Intermediate results in a pipeline need to be flushed to HDFS
•A very particular “API” for working with your data



It’s not about the size of your 
data;
it’s about what you do with it!



Graph relationships

•Entities in your data: tuples
• customer data
• product data
• interaction data

•Connection between entities: graphs
• social network or my customers
• clustering of customers vs. products



Challenges

•Data is dynamic
• No way of doing “schema on write”

•Combinatorial explosion of datasets
• Relationships grow exponentially

•Algorithms become
• explorative
• iterative



Graph databases

•Plenty available
• Neo4J, Titan, etc.

•Benefits
• Tightly integrate systems with few moving parts
• High performance on known data sets

•Shortcomings
• Don’t integrate with HDFS
• Combine storage and computational layers
• A sea of APIs



Enter Apache Giraph



Key insights

•Keep state in memory for as long as needed
•Leverage HDFS as a repository for unstructured data
•Allow for maximum parallelism (shared nothing)
•Allow for arbitrary communications
•Leverage BSP approach



Bulk Synchronous 
Parallel
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BSP applied to graphs

@rhatr

@TheASF

@c0sin

Think like a vertex:
•I know my local state
•I know my neighbours
•I can send messages to vertices
•I can declare that I am done
•I can mutate graph topology



Bulk Sequential 
Processing
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Giraph “Hello World”
public class GiraphHelloWorld extends

    BasicComputation<IntWritable, IntWritable, NullWritable, NullWritable> {

    public void compute(Vertex<IntWritable, IntWritable, NullWritable> vertex,

                                    Iterable<NullWritable> messages) {

        System.out.println(“Hello world from the: “ + vertex.getId() + “ : “);

        for (Edge<IntWritable, NullWritable> e : vertex.getEdges()) {

           System.out.println(“ “ + e.getTargetVertexId());

        }

        System.out.println(“”);

    }

}



Mighty four of Giraph 
API

BasicComputation<IntWritable,   // VertexID  -- vertex ref      
                            
                               IntWritable,   // VertexData -- a vertex 
datum
                               NullWritable, // EdgeData -- an edge 
label datum
                               NullWritable>// MessageData -- message 
payload



On circles and arrows

•You don’t even need a graph to begin with!
• Well, ok you need at least one node

•Dynamic extraction of relationships
• EdgeInputFormat
• VetexInputFormat

•Full integration with Hadoop ecosystem
• HBase/Accumulo, Gora, Hive/HCatalog 



Anatomy of Giraph run
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Anatomy of Giraph run
                      mappers or YARN containers
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A vertex view

MessageData1

VertexID

EdgeData

EdgeData

   

 VertexData MessageData2



Turning Twitter into 
Facebook
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Ping thy neighbours
public void compute(Vertex<Text, DoubleWritable, DoubleWritable> vertex, 
Iterable<Text> ms ){ 

        if (getSuperstep() == 0) {

           sendMessageToAllEdges(vertex, vertex.getId());

        } else {

            for (Text m : ms) {

               if (vertex.getEdgeValue(m) == null) {

                 vertex.addEdge(EdgeFactory.create(m, SYNTHETIC_EDGE));

               }

           }

        }

        vertex.voteToHalt();

 }



Demo time!



But I don’t have a 
cluster!
•Hadoop in pseudo-distributed mode

• All Hadoop services on the same host (different JVMs)
• Hadoop-as-a-Service

• Amazon’s EMR, etc.
• Hadoop in local mode



Prerequisites 

•Apache Hadoop 1.2.1
•Apache Giraph 1.1.0-SNAPSHOT
•Apache Maven 3.x
•JDK 7+



Setting things up

$ curl hadoop.tar.gz | tar xzvf –
$ git clone  git://git.apache.org/giraph.git ; cd giraph
$ mvn –Phadoop_1 package
$ tar xzvf *dist*/*.tar.gz

$ export HADOOP_HOME=/Users/shapor/dist/hadoop-1.2.1
$ export GIRAPH_HOME=/Users/shapor/dist/
$ export HADOOP_CONF_DIR=$GIRAPH_HOME/conf
$ PATH=$HADOOP_HOME/bin:$GIRAPH_HOME/bin:$PATH



Setting project up 
(maven)

 <dependencies>

    <dependency>

      <groupId>org.apache.giraph</groupId>                           

      <artifactId>giraph-core</artifactId>

      <version>1.1.0-SNAPSHOT</version>

    </dependency>

    <dependency>

      <groupId>org.apache.hadoop</groupId>                             

      <artifactId>hadoop-core</artifactId>

      <version>1.2.1</version>

    </dependency>

  </dependencies>



Running it

$ mvn package
$ giraph target/*.jar giraph.GiraphHelloWorld \
   -vip src/main/resources/1 \
   -vif 
org.apache.giraph.io.formats.IntIntNullTextInputFormat  \
   -w 1 \
   -ca 
giraph.SplitMasterWorker=false,giraph.logLevel=error



Testing it
public void testNumberOfVertices() throws Exception {

    GiraphConfiguration conf = new GiraphConfiguration();

    conf.setComputationClass(GiraphHelloWorld.class);

    
conf.setVertexInputFormatClass(TextDoubleDoubleAdjacencyListVertexInputForma
t.class);

    …

    Iterable<String> results =

          InternalVertexRunner.run(conf, graphSeed);

    …

 }



Simplified view
                      mappers or YARN containers
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Master and master 
compute
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Master compute

•Runs before slave compute()
•Has a global view
•A place for aggregator manipulation



Aggregators

•“Shared variables”
•Each vertex can push values to an aggregator
•Master compute has full control
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Questions?
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