
1

The Apache Lucene Infrastructure:
What’s going on in development

behind the scenes?

Uwe Schindler
Apache Lucene Committer & PMC Chair

uschindler@apache.org

http://www.thetaphi.de, http://blog.thetaphi.de

@ThetaPh1

SD DataSolutions GmbH, Wätjenstr. 49, 28213 Bremen, Germany

Tel: +49 421 40889785-0, http://www.sd-datasolutions.de

mailto:uschindler@apache.org
http://www.thetaphi.de/
http://blog.thetaphi.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/

My Background

• Committer and PMC chair of Apache Lucene and Solr -

main focus is on development of Lucene Core.

• Implemented fast numerical search and maintaining the

new attribute-based text analysis API. Well known as

Generics and Sophisticated Backwards Compatibility

Policeman.

• Working as consultant and software architect at SD

DataSolutions GmbH in Bremen, Germany. The main task

is maintaining PANGAEA (Publishing Network for

Geoscientific & Environmental Data) where I implemented

the portal's geo-spatial retrieval functions with Apache

Lucene Core and Elasticsearch.

Agenda

• Motivation

• The Apache Lucene infrastructure

• Tools

• Policeman Jenkins

• Automated release testing

3

MOTIVATION

4

Motivation

• Release early, release often!

– Lot’s of new features in LUCENE and SOLR

evolving

– Users should get them as soon as possible

• Sister projects like Elasticsearch

– are very active

– share committers

– rely on new features and bug fixes available

in time

5

Problems

• Burden for release manager

– Many small details to take care of

– Wiki page about release got larger and larger!

• Risks with non-automated checks

– RM or voting PMC members miss to carefully

check all stuff

– Time intensive

6

Problems

• Burden for release manager

– Many small details to take care of

– Wiki page about release got larger and larger!

• Risks with non-automated checks

– RM or voting PMC members miss to carefully

check all stuff

– Time intensive

6

THE APACHE LUCENE

INFRASTRUCTURE

7

Build system

• Apache Ant

• Apache Ivy for dependencies

• Multi-Module structure

– Inter-module deps not yet ideal

• Why not Apache Maven?

– More flexibility with Ant for release process!

8

TOOLS

Custom Plugins in the Ant build system

9

10

} catch (Exception e) {

 // Eclipse autogenerat

 e.printStackTrace();

}

10

} catch (Exception e) {

 // Eclipse autogenerat

 e.printStackTrace();

}

10

} catch (Exception e) {

 // Eclipse autogenerat

 e.printStackTrace();

}

Forbidden-APIs

• Keep Lucene free of „unsafe“ APIs:

– Locale sensitive calls using system default

– Use of platform‘s default charset

– Same applies to timezones and default use of

non-Gregorian calendars (e.g., Thai).

• Other no-gos:

– Printing to System.out/err

– Creating threads without name

11

Forbidden-APIs

• Why not PMD / FindBugs?

– Incomplete

– Slow

– Hard to add custom “forbidden” signatures

• Just a “simple” tool to analyze bytecode

and trigger on method signatures

– Also works with classes in general and

annotations

– Compatible to Java 8: Lambdas supported!

12

Forbidden-APIs

• Used by other projects, too:

– Elasticsearch (with Maven)

• Available through Maven Central

– Ant plugin (e.g., used via Ivy)

– Maven Mojo

– Various signature files included: “unsafe”,
JDK deprecated methods, System.out

13

14

14

14

https://code.google.com/p/forbidden-apis/

15

License checker

• Checks that every dependency has a

corresponding license file and SHA1

checksum available for shipping in the

distribution

• As a side-effect checks that Maven build

does not fetch additional transitive

dependencies

• Used in addition to Apache Rat

16

JAVA

DOCS

17

Javadocs checker

• Javadocs should be up-to-date!

– Unfortunately programmer’s tend to forget

about them

• 2 steps validation:

18

Javadocs checker

• Javadocs should be up-to-date!

– Unfortunately programmer’s tend to forget

about them

• 2 steps validation:

– Use Eclipse (ecj) compiler as additional

validation step: This compiler allows to fail on

incorrect Javadocs

18

Javadocs checker

• Javadocs should be up-to-date!

– Unfortunately programmer’s tend to forget

about them

• 2 steps validation:

– Use Eclipse (ecj) compiler as additional

validation step: This compiler allows to fail on

incorrect Javadocs

– Python script that checks links, e.g. between

modules

18

Java 8 Future: Javadocs

• Java 8 has new -Xdoclint feature in

javac and javadocs!

– even more strict than our checks (disallows

XHTML, only HTML4)

– lacks some checks we currently do

• Currently disabled until Javadocs are

made HTML4 only!

– If Ant detects Java 8, pass –Xdoclint:none

19

SUBVERSION ISSUES

Test Runner

20

SVN Working Copy

• Precommit and Jenkins consistency

checks:

– working copy should not be dirty after running

tests (leftover files)

– All files need correct MIME-Type SVN

properties

– svn:eol-style is checked

21

SVN Working Copy

• Precommit and Jenkins consistency

checks:

– working copy should not be dirty after running

tests (leftover files)

– All files need correct MIME-Type SVN

properties

– svn:eol-style is checked

• Ant <groovy/> script using SVNKit

21

22

23

Maven build

• Apache Lucene and Solr use primarily

Apache Ant to build from source

• Optional, limited Maven build system

24

Maven build

• Apache Lucene and Solr use primarily

Apache Ant to build from source

• Optional, limited Maven build system

• Apache Maven POMs are generated by

additional Ant task

• Same applies for Eclipse, IntelliJ,

Netbeans projects

24

POLICEMAN JENKINS

24/7 randomized testing of many JVMs

25

Randomization everywhere

• Apache Lucene & Solr use randomization while

testing:

– Random codec settings

– Random Lucene directory implementation

– Random locales, default charsets,…

– Random indexing data

26

Randomization everywhere

• Apache Lucene & Solr use randomization while

testing:

– Random codec settings

– Random Lucene directory implementation

– Random locales, default charsets,…

– Random indexing data

• Reproducible:

– Every test gets an initial random seed

– Printed on test execution & included in stack traces

26

Randomize your tests and it

will blow your socks off!

Dawid Weiss
(yesterday)

27

Missing parts

• JVM randomization
– Oracle JDK 7, Oracle JDK 8

– IBM J9 7

– Preview releases

28

Missing parts

• JVM randomization
– Oracle JDK 7, Oracle JDK 8

– IBM J9 7

– Preview releases

• JVM settings randomization
– Garbage collector

– Bitness: 32 / 64 bits

– Server / Client VM

– Compressed OOPs (ordinary object pointer)

28

Missing parts

• JVM randomization
– Oracle JDK 7, Oracle JDK 8

– IBM J9 7

– Preview releases

• JVM settings randomization
– Garbage collector

– Bitness: 32 / 64 bits

– Server / Client VM

– Compressed OOPs (ordinary object pointer)

• Platform
– Linux, Windows, MacOS X, FreeBSD,…

28

Possibilities

• Define each Jenkins job with a different JVM:

– Duplicates

– Hard to maintain

– Multiplied by additional JVM settings like GC,

server/client, or OOP size

29

Possibilities

• Define each Jenkins job with a different JVM:

– Duplicates

– Hard to maintain

– Multiplied by additional JVM settings like GC,

server/client, or OOP size

• Make Jenkins server set build / environment

variables with a (pseudo-)randomization script:

– $JAVA_HOME → passed to Apache Ant

– $TEST_JVM_ARGS → passed to test runner

29

Plugins needed

• Environment Injector Plugin

– Executes Groovy script to do the actual work

– Sets some build environment variables:
$JAVA_HOME, $TEST_JVM_ARGS, $JAVA_DESC

30

Plugins needed

• Environment Injector Plugin

– Executes Groovy script to do the actual work

– Sets some build environment variables:
$JAVA_HOME, $TEST_JVM_ARGS, $JAVA_DESC

• Jenkins Description Setter Plugin / Jenkins Email

Extension Plugin

– Add JVM details / settings to build description and e-mails

30

Global Jenkins settings

• Extra JDK config in Jenkins (called “random”):

– pointing to dummy directory (we can use the base

directory containing all our JDKs)

– Assigned to every job that needs a randomly choosen

virtual machine

31

32

32

The warning displayed by Jenkins doesn’t matter!

Job Config

• Standard free style build with plugins activated

– Calls Groovy script file with main logic (sets
$JAVA_HOME randomly,…)

– List of JVM options as a „config file“

– Job‘s JDK version set to „random“

– Apache Ant configuration automatically gets
$JAVA_HOME and test runner gets extra options via

build properties

33

Job Config

• Standard free style build with plugins activated

– Calls Groovy script file with main logic (sets
$JAVA_HOME randomly,…)

– List of JVM options as a „config file“

– Job‘s JDK version set to „random“

– Apache Ant configuration automatically gets
$JAVA_HOME and test runner gets extra options via

build properties

• Should work with Maven builds, too!

33

34

35

36

37

38

38

AUTOMATED RELEASE

TESTING

39

Release Workflow

• Release Manager (RM) creates artifacts

• RM does initial testing

• Project Management Committee (PMC)

votes for artifacts (72hrs)

• RM publishes artifacts and javadocs

40

Release Building

• All Apache Ant checks (like previously presented)

• Python script creates release and uploads

to staging area

• Runs “smoke tester”

41

Smoke Tester

42

Smoke Tester

• Python™ powered

42

Smoke Tester

• Python™ powered

• Convenient use for release

manager and PMC

42

Smoke Tester

• Python™ powered

• Convenient use for release

manager and PMC

• Includes functional testing 

42

Smoke Tester

• Python™ powered

• Convenient use for release

manager and PMC

• Includes functional testing 

• Takes approx. one hour

42

Smoke Tester

• Python™ powered

• Convenient use for release

manager and PMC

• Includes functional testing 

• Takes approx. one hour

• Uses all your CPU and burns

package contents!

42

Continuous Nightly

• Smoke testing runs nightly as Jenkins

Job

• Preview releases downloadable:
– https://builds.apache.org/job/Lucene-Artifacts-4.x/

– https://builds.apache.org/job/Solr-Artifacts-4.x/

43

https://builds.apache.org/job/Lucene-Artifacts-4.x/
https://builds.apache.org/job/Lucene-Artifacts-4.x/
https://builds.apache.org/job/Lucene-Artifacts-4.x/
https://builds.apache.org/job/Lucene-Artifacts-4.x/
https://builds.apache.org/job/Lucene-Artifacts-4.x/
https://builds.apache.org/job/Lucene-Artifacts-4.x/
https://builds.apache.org/job/Solr-Artifacts-4.x/
https://builds.apache.org/job/Solr-Artifacts-4.x/
https://builds.apache.org/job/Solr-Artifacts-4.x/
https://builds.apache.org/job/Solr-Artifacts-4.x/
https://builds.apache.org/job/Solr-Artifacts-4.x/
https://builds.apache.org/job/Solr-Artifacts-4.x/

Thank You!

44

